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Reflection on event horizon for collapsing black holes
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It was argued recently that there exists an unexpected phenomenon, the reflection of incoming
particles on the event horizon of black holes (Kuchiev(2003)). This means that a particle approaching
the black hole can bounce back into the outside world due to those events that take part strictly
on the horizon. Previously the effect was discussed in relation to eternal black holes. The present
work shows that the effect exists for collapsing black holes as well.

PACS numbers: 04.70.Dy, 04.20.Gz

I. INTRODUCTION

An interest in quantum properties of the scattering
problem that describes an impact of a particle on a black
hole was inspired by the discovery of the Penrose pro-
cess [1], and the works of Zel’dovich [2] and Misner [3]
devoted to the energy extraction from the Kerr black
hole. First numerical results for scattering of scalar par-
ticles on rotating black holes were presented by Press and
Teukolsky [4, 5]. The analytical solution of the scattering
problem, which had a strong influence on further devel-
opments, was found by Starobinsky [6] for the scalar field
and Starobinsky and Churilov [7] for electromagnetic and
gravitational waves scattered by the rotating Kerr black
hole. Independently, Unruh [8] considered scattering of
scalar and fermion particles on Schwarzschild black holes.
Further study of the scattering problem was presented by
Sanchez [9]. After these and the numerous works that fol-
lowed, it has been assumed that the scattering problem
is completely understood, see details and bibliography in
the books [10, 11, 12, 13].

The present work discusses particular aspects of the
scattering problem related to quantum phenomena,
which take place strictly on the event horizon of black
holes. The important relevant effects in this area are the
Hawking radiation [14, 15], and the Unruh process [16].
The Hawking radiation is associates with the entropy of
black holes, which, according to Bekenstein [17, 18, 19],
equals the area of the horizon. For a review of the Hawk-
ing radiation and the thermodynamics properties of black
holes see Refs. [20] and [21]. The Hawking radiation can
be treated as a tunneling process, see e.g. Parikh and
Wilczek [22], Khriplovich [23], and Khriplovich and Ko-
rkin [24] and references therein. Another line of research
on quantum phenomena aims at quantization of energy
levels of black holes, see discussion in Bekenstein [25, 26]
and references therein. Treatment of a number of dif-
ferent quantum phenomena on the event horizon can be
found in the review by ’t Hooft [27] which, among other
issues discusses the brick wall model of Ref. [28], aimed
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at explanation of the entropy of black holes.
The effect of the Hawking radiation can be considered

in terms of the influence that the horizon exercises on
the vacuum of the theory. It has been realized recently
that quantum events on the horizon have also a strong
impact on the wave function of a particle that approaches
a black hole [29, 30, 31]. As a result there arises a new
qualitative feature in the scattering problem. A parti-
cle approaching the black hole can bounce on its event
horizon back into the outside world. This phenomenon,
which is referred to below as the reflection on the hori-
zon (RH) using the terminology of [30], is due to pure
quantum reasons; in the classical approximation it is ob-
viously absent. The RH effect, which is strong when the
wavelength of the particle exceeds the radius of the event
horizon, reduces the absorption cross section, making it
zero in the infrared region, as was demonstrated explic-
itly in Ref.[32] for scattering of low-energy scalar massless
particles on Schwarzschild black holes. This behavior of
the cross section differs qualitatively from the result of
Unruh [8], which stated that this cross section equals the
area of the horizon. Ref. [32] argued that similar re-
duction of the cross section is expected for scattering of
any massless particle by any black hole in the low energy
limit. Recent Ref. [33] gives a brief summary of progress
related to the RH.

Refs.[29, 30, 31, 32, 33] suggested several arguments
in favor of the RH. However, all of them, one way or
another, were related to eternal black holes, inspiring a
question as to whether the phenomenon exists for col-
lapsing black holes as well, or is merely a peculiar fea-
ture relevant to eternal black holes only. The present
work shows that the RH does take place for collapsars
being thus a common effect for black holes.

II. SYMMETRY AND ANALYTICAL

CONTINUATION

Let us formulate briefly and in general terms the main
idea of this work. Consider a quantum system charac-
terizes by a set of coordinates Q, which include the time
variable; generally speaking this set may be infinite. Take
some quantum state of this system, not necessarily sta-
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tionary, which is described by the wave function Ψ(Q).
Assume now that there is some discrete symmetry that
characterized the system, calling the operator that gen-
erates this symmetry Ŝ. It suffices to restrict out presen-
tation to the simplest case, when the symmetry group is
Z2, i.e. the symmetry group is generated by the only op-
erator Ŝ, which satisfies Ŝ2 = 1. (Though more general
symmetries can also be covered by the method discussed,
they will not play a role in the present work.) Since Ŝ

is a symmetry, the function Ψ′(Q) = Ŝ[Ψ](Q) necessarily
describes some physically allowed state of the system.

Let us consider now the complex extensions of the co-
ordinates Q, using the analytical continuation for con-
structing the wave function Ψ(Q) for the complex-valued
coordinates. Take some closed contour C that runs in
the multidimensional space of the complex coordinates
Q. Fig. 1 gives a schematic presentation for this con-
tour. The contour starts and finishes at some real physi-
cal point Q. Generically, the wave function Ψ(Q) should
have a sufficiently complex Riemann surface that pos-
sesses some singularities; the cuts attached to them give
access to different sheets of the Riemann surface. Corre-
spondingly, the value of the wave function depends on the
sheet of the Riemann surface where it is taken. Thus, if
the contour C crosses some cut that separates two sheets
of the Riemann surface, called A1 and A2 in Fig. 1, then
after returning to the initial physical value of Q the wave
function acquires a new value, call it Ψ̃(Q). Assume now

A1 A 2

Q

Q
C

FIG. 1: Schematic presentation of the analytical continua-
tion of the wave function Ψ(Q) into the complex-valued co-
ordinates Q. The contour C goes from the sheet A1 of the
Riemann surface over the cut to another sheet A2. As a result
the wave function changes from Ψ(Q) into Ψ̃(Q).

that one is able to verify that the analytical continuation
along the contour C and the symmetry transformation
with the operator Ŝ have one and the same influence on
the system. Then one can say that

Ŝ[Ψ](Q) = Ψ̃(Q) . (2.1)

This equality is derived from the initial wave function
Ψ(Q) by the symmetry transformation, which is imple-
mented on the left-hand side directly, while on the right-
hand side it works through the analytical continuation.
One concludes from this that Eq.(2.1) provides a symme-
try condition on Ψ(Q). Eq.(2.1) is based on the relation
between a monodromy transformation (analytical con-
tinuation) and a discrete symmetry of the system, which
generally speaking is a well known method. To mention
some result derived with its help one can remember the

known Seiberg-Witten solution for the N = 2 supersym-
metric theory Ref.[34].

The system discussed in this work consists of collapsing
matter and an incoming probing particle. The relevant
discrete symmetry of the system is the time inversion,
which transforms the collapsing matter (black hole) into
an expanding matter (white hole), and at the same time
forces the incoming particle to become the outgoing one.
We will see in Section VIII that Eq.(2.1) puts a restriction
on the wave function of the particle, deriving from it that
the RH really takes place.

III. COLLAPSING BLACK HOLE

This section summarizes briefly several important for
us, though well known facts related to the collapse of the
dust matter, i. e. matter without pressure, p = 0, see
books [35, 36] for details. For simplicity let us take the
spherically symmetrical case when the collapse can be
described by the Tolman metric

ds2 = −dτ2 + exp(λ) dR2 + r2dΩ2 , (3.1)

which is a function of τ , the radial variable R, and angu-
lar variables θ, ϕ; dΩ2 = dθ2 + sin2 θdϕ2. The functions
λ = λ(R, τ) and r = r(R, τ) are defined by the Einstein
equations, which give for them

exp(λ) =
r′ 2

f(R) + 1
, (3.2)

ṙ 2 = f(R) + F (R)/r . (3.3)

Here and below the dotted and primed functions indicate
derivatives over τ and R. The two functions f(R), F (R)
provide the initial conditions for the spherically symmet-
rical dust matter. One of them, namely F (R), defines
the density of matter ǫ

8πGǫ =
F ′

r′r2
. (3.4)

The total mass of matter inside a sphere with the radius
R equals

m(R) = 4π

∫ R

0

ǫ r2 dr =
F (R)

2G
. (3.5)

The integrand here has no additional factors of exp(λ) or
r′ due to the defect of mass caused by gravity. Eq.(3.5)
shows that F (R) can be considered as the gravitational
radius for the mass of matter accumulated inside the
sphere of radius R, F (R) = 2Gm(R). Another function
f(R), which appears in the formulation of the problem,
gives an additional parameter that is needed to define the
distribution of velocities of the matter given by Eq.(3.3).
The two functions f(R), F (R) will be presumed to satisfy
conditions

f(R) + 1 > 0 , F (R) > 0 , (3.6)

r′ ≥ 0 , F ′(R) ≥ 0 . (3.7)
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Eqs.(3.6) are necessary to make exp(λ) and r positive,
whereas Eqs.(3.7) exclude crossings of different spherical
shells of the collapsing matter, which simplifies discus-
sion.

Each shell of matter is characterized by some value of
R, which remains constant during the collapse

R = const . (3.8)

Integrating Eq.(3.3) when Eq.(3.8) holds one finds the
explicit relation that defines the radius vector r = r(R, τ)
of the shell of matter

τ = −

∫ r

r0

dr

(f + F/r)1/2
. (3.9)

Here r0 = r0(R) is an arbitrary function of R. The sign
minus in front of the integral in Eq.(3.9) indicates that all
velocities of the collapsing matter are negative, ṙ < 0. A
fixed value of R in Eq.(3.9) prompts a shortcut notation
f = f(R), F = F (R), which is also used below. If one
changes the sign in front of the integral in Eq.(3.9), then
the metric in Eq.(3.1) describes the exploding matter i.e.
the white hole, which plays a significant role below.

In the particular case, when

f(R) = 0 , F (R) = rg = const , (3.10)

the Tolman metric Eq.(3.1) represents the metric of eter-
nal black holes. To see this clearly, one can choose r0 =
rg[3R/(2rg)]

3/2, finding that r = rg[3/(2rg)(R − τ)]3/2.
Then Eq.(3.1) reduces to the Lemaitre metric

ds2 = −dτ2 + (rg/r) dR
2 + r2dΩ2 . (3.11)

Further transformation of variables R, τ → r, t

τ = ±t±

∫

(rg/r)
1/2

1 − rg/r
dr, R = r +

∫

(r/rg)1/2

1 − rg/r
dr,(3.12)

converts the Lemaitre metric to the Schwarzschild metric

ds2 = −
(

1 −
rg
r

)

dt2 +
dr2

1 − rg/r
+ r2dΩ2 , (3.13)

which explicitly describes a static eternal black hole.

IV. COMPLEX TRANSFORMATIONS AND

TIME INVERSION FOR COLLAPSING MATTER

Let us introduce a complex structure associated with
the Tolman metric Eq.(3.1). The angular variables θ, ϕ
would not play a role below because we restrict discus-
sion to the spherically symmetrical case. Our aim is to
generalize the radial motion, allowing the radial variables
to acquire complex values. It is sufficient to keep R real,
allowing only r and τ to become complex-valued. It suf-
fices also to assume that the classical equations of motion
for matter Eqs.(3.8),(3.9) hold; in other words, we con-
sider here the analytical continuation of the geodesics for
the collapsing matter.

Eq.(3.9) allows one to take one of the variables r, τ
as an independent variable, and treat the other one as
its function. The conventional approach (which was fol-
lowed above) takes r as a function of τ . However, it is
more convenient here to assume that τ is a function of
r, τ = τ(r), see Fig. 2. This choice allows one to keep
connection with the case of eternal static black holes,
where the time variable does not play a role and the
analytical continuation is applied to r, see Section VII.
Obviously the function τ(r) presented by the integral in

− F(R)/f(R)

r

0 rF(R)

Re(r)

C

Im(r)

FIG. 2: The Riemann surface for the function τ (r) possesses
the cut of the squareroot nature that connects the points r = 0
and r = −F/f . Similar cut exists for the action S(r, τ (r)) of
the probing particle. Additionally, the action has the loga-
rithmic singularity on the horizon r = F (R) with the cor-
responding cut attached. The analytical continuation along
the contour C generates the time inversion Eq.(4.1) for the
collapsing matter; additionally, it results in transformations
Eqs.(6.5),(6.6) for the action of the probing particle.

Eq.(3.9) can be expressed via elementary functions, but
it is more instructive to derive its analytical properties di-
rectly from Eq.(3.9). On the complex plane r the integral
in Eq.(3.9) has two singular points, r = 0 and r = −F/f ,
which match singularities of the radical (f + F/r)1/2 in
the integrand. This makes τ(r) an analytical function of
r, which has a cut on the complex plane r that runs be-
tween the two singular points r = 0 and r = −F/f . Fig.
2 shows this cut running over the section (−F/f, 0) of
the real axis. Using the analytical continuation over this
cut one constructs the Riemann surface for this func-
tion. The singularities at r = 0 and r = −F/f are of
the squareroot nature. Therefore the Riemann surface
includes two Riemann sheets.

Let us assume that the initial real physical values of
r and τ belong to the outside region, i. e. r >= F (R),
where R = R(r, τ). Starting from this point one can con-
tinue the function τ(r) along the contour C that crosses
the cut and then returns to the initial physical value of r,
as shown in Fig. 2. Under this transformation (usually
called a monodromy) the function is transformed as

τ(r) → −τ(r) + α . (4.1)

Here the sign minus arises due to the squareroot nature
of the crossed cut. The term α in Eq.(4.1) is a constant,
which depends on r0 in Eq.(3.9). Since r0 is real, α is
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also real and can be absorbed in the shift of the origin of
time.

Eq.(4.1) shows that the analytical continuation de-
scribed results in the inversion of the time variable. The
equations of motion of the collapsing matter under this
continuation become equations of motion for the expand-
ing matter. Speaking plainly, this analytical continuation
transforms a black hole into a white hole.

V. PROBING PARTICLE

Consider motion of a probing particle in the metric
Eq.(3.1) created by the collapsing matter. It suffices to
restrict discussion to the simplest case of a pure radial
motion of the massless scalar particle, i.e. to choose the
spin s, orbital momentum l, and mass µ of the particle
to be all zero, s = l = µ = 0. The corresponding classical
action is a function of R and τ only, S = S(R, τ). The
Hamilton-Jacobi equations of motion gµν∂µS ∂νS = 0,
which follow from Eq. (3.1) in this case, have a simple
form

∂S

∂τ
= ±

1

r′
(f + 1)1/2 ∂S

∂R
. (5.1)

Here f = f(R); r is defined in Eq.(3.9) as a function of R
and τ , r = r(R, τ); the signs plus and minus correspond
to the outgoing and incoming trajectories respectively.
Eq.(5.1) is formulated in terms of the initial variables
R, τ of the Tolman metric. It is convenient now to look
at the problem from another perspective, considering r, τ
as independent variables and assuming that R = R(r, τ)
is a function defined by the geodesics Eq. (3.9). One
easily finds that

(

∂S

∂R

)

τ

= r′
(

∂S

∂r

)

τ

, (5.2)

(

∂S

∂τ

)

R

=

(

∂S

∂τ

)

r

− r′Ṙ

(

∂S

∂r

)

τ

, (5.3)

where Ṙ = (∂R/∂τ)r. Differentiating Eq.(3.9), while
keeping either τ = const, or r = const, one finds also
that

r′Ṙ = (f + F/r)1/2 . (5.4)

Using Eqs.(5.2),(5.3) and (5.4) one rewrites Eq.(5.1) in a
more convenient form

−
∂S

∂τ
= w

∂S

∂r
, (5.5)

where S = S(r, τ) and the function w is defined as

w ≡ w±(r, τ) = −
(

(f + F/r)1/2 ∓ (f + 1)1/2
)

. (5.6)

The signs plus and minus here match the signs in
Eq.(5.1), the variables f = f(R) and F = F (R) are both
functions of r, τ since it is presumed that R = R(r, τ).

To clarify the physical meaning of the factor w in
Eq.(5.5) it is convenient to use the canonical formalism
introducing the Hamiltonian H and the momentum of
the particle p

p =
∂S

∂r
, (5.7)

H = −
∂S

∂τ
= wp , (5.8)

where the last identity follows from Eq.(5.5). Then from
Eq.(5.8) and the canonical equations of motion one finds
that w equals the velocity of the particle

dr

dτ
=
∂H

∂p
= w , (5.9)

which makes Eq.(5.5) convenient for the following discus-
sion.

VI. COMPLEX TRANSFORMATIONS FOR

PROBING PARTICLE

Let us discuss an analytical continuation of the vari-
ables, which describe the radial motion with zero orbital
momentum of the scalar massless probing particle. This
task is similar to the one dealt with in Section IV, where
the analytical continuation was applied to the collapsing
matter. However the study of the probing particle will
be more detailed. In Section IV we discussed the ana-
lytical continuation assuming that the equations of mo-
tion are satisfied (i.e. assuming that Eqs.(3.8),(3.9) are
valid). For the probing particle discussed here the ana-
lytical continuation of the action of the probing particle
is considered. This presumes that the classical equations
of motion for this particle are not necessarily valid. The
classical action presents a particular interest since it al-
lows one to construct the semi-classical wave function,
see Section VIII.

Since the variables r, τ are not presumed to satisfy the
equations of motion, the action S(r, τ) that describes the
radial motion is a function of two independent variables.
An analytical structure associated with this function for
complex values of both variables is too sophisticated for
our purposes. It is desirable therefore to simplify the
problem forcing the action to be a function of only one
complex variable.

With this in mind let us adopt the following approach.
First, take some arbitrary real physical values for r, τ , call
them r = r0 and τ = τ0. Then find a real physical R that
satisfies classical equations of motion for the collapsing
matter Eqs.(3.8),(3.9). In other words, find a shell of
matter labeled by R, which at the moment τ0 is located
at the radius-vector r0. This makes R a function of the
chosen physical variables R = R(r0, τ0). After that let us
fix the found value of R and allow r and τ to take only
particular complex values that satisfy Eq.(3.9).
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Thus, the described procedure presumes that the com-
plex values of r, τ satisfy the classical equations of mo-
tion (3.9) for matter. The complex radius vector r of the
particle follows the complex extension of the geodesics.
Under this condition the complex-valued τ can be taken
as a function of the complex-valued r, τ = τ(r). At the
same time, there is no restriction on real physical values
of r0, τ0; they remain two independent physical variables.
The procedure outlined ensures that during the analyti-
cal continuation the action remains a function of only one
complex variable r, S(r, τ) = S(r, τ(r)), which simplifies
its analytical properties.

There exist, obviously, a variety of other ways to put
some restriction on complex values of r and τ making
τ a function of r, and thus forcing the action to be a
function of one variable. An advantage of the procedure
adopted here is that it matches the motion of matter,
which follows the geodesics. This fact will allows one
to combine results for the analytical continuation of the
motion of the matter and probing particle.

It becomes clear below that the horizon plays an im-
portant role in the analytical structure of the action. An-
ticipating this feature one can presume that the physical
values of r0, τ0 are chosen close to the event horizon, i.
e. the following condition is fulfilled

|r0 − F (R)| ≪ F (R) , (6.1)

where R is a function of r0, τ0 as described above. This
means that at the moment τ0 the shell marked by R
is close to its horizon as well. The subscripts in r0, τ0
are suppressed below; it is to be clear from the context
whether real physical values of the variables r, τ , or their
complex extensions are discussed.

Eq.(5.6) defines w as a function of r, τ . Following the
procedure adopted, i. e. taking R = const, one makes w
a function of r only. Then Eq.(5.6) shows explicitly that
on the complex plain r this is a regular function with
a squareroot-type cut from r = 0 to r = −F/f . This
function takes the values w+ and w− on the two sheets
of the corresponding Riemann surface. It is convenient to
label these sheets as A+ and A−, and call them the sheet
of outgoing particles, and the sheet of incoming particles
respectively (keeping in mind that the velocities satisfy
w+ > 0, w− < 0).

Since the action S(r, τ) is a solution of Eq.(5.5), which
is governed by w, it necessarily exhibits properties similar
to w. This means that it is an analytical function, which
possesses the cut of the squareroot nature from r = 0
to r = −F/f on the complex plane r, taking the val-
ues S+(r, τ(r)) and S−(r, τ(r)) on the two sheets of the
Riemann surface. Here S+(r, τ) is defined on the sheet
A+ and describes the outgoing motion, while S−(r, τ) is
located on A− and is related to the incoming motion of
the particle.

Let us discuss now the second important feature of the
action, which is related to the node of the function w.
Eq.(5.6) shows that this node is located on the horizon
r = F on the sheet A+ of the Riemann surface, which

corresponds to the outgoing motion with w = w+. This
singularity of Eq.(5.5) enforces singular behavior on the
action. The derivative −∂S/∂τ = H on the left-hand
side of Eq. (5.5) represents the Hamiltonian, which is
certainly positive H > 0 for all physical values of r, τ in
the outside region r > F . It remains therefore nonnega-
tive on the horizon H → H0 ≥ 0, r → F . One concludes
that the derivative ∂S/∂r on the right-hand side of Eq.
(5.5) exhibits a pole-type behavior on the horizon

∂S

∂r
=
H0

w
→

a

r − F
+ const , when r → F , (6.2)

Here the residue is

a = 2 (f + 1)1/2 F H0 ≥ 0 , (6.3)

as it follows from Eq.(5.6). The factor H0 =
−(∂S/∂τ)r=F in Eq.(6.2) denotes the Hamiltonian of the
particle on the horizon. From Eq.(6.2) one finds that the
action itself has a logarithmic singularity on the horizon

S → a ln(r − F ) + const , r → F . (6.4)

We see that the analytical structure of the function
S(r, τ(r)) on the complex plane r is defined by two fea-
tures shown in Fig. 2. There is a cut from r = 0 to
r = −F/f that connects the two sheets A+ and A− of
the Riemann surface where the action takes the values
S+(r, τ) and S−(r, τ) respectively. Additionally, there is
the logarithmic singularity Eq.(6.4), which is located on
the horizon being present on the sheet A+ [41].

Consider now the transformation of the action when
it is continued along the contour C in Fig. 2. The rea-
sons inspiring to choose this contour for the analytical
continuation are discussed below. To be specific let us
take the action that describes the incoming trajectory
S− = S−(r, τ(r)). Correspondingly the contour C starts
on the sheet A− of the Riemann surface that corresponds
to the incoming particles and, after crossing the cut over
(−F/f, 0), ends up on the sheet A+ of the outgoing par-
ticles.

Combining the transformations arising from both the
cut on the segment (−F/f, 0) and the logarithmic sin-
gular point r = F , see Fig. 2, one concludes that the
analytical continuation over the contour C results in the
following transformation of the action

S−(r, τ) → −S+(r, τ) + iπa . (6.5)

Two features are to be noted here. First, the negative
sign in front of S+(r, τ), which is related to the crossing
of the cut; the squareroot nature of this cut makes this
sign inevitable. Second, there is the imaginary part in
the right-hand side, which arises due to circling around
the logarithmic singular point over the angle π counter
clockwise. It adds iπ to the logarithmic function, forcing
through Eq.(6.4) the imaginary constant iπa to appear
in the transformation of the action. Generally speaking,
there may exist also an additional real additive constant
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in the right-hand side of Eq.(6.5), but its calculation is
not pursued here, since it is not important for our pur-
poses. In contrast, the imaginary term plays a prominent
role below.

Similarly the analytical continuation over the contour
C for the action S+(r, τ) results in the transformation

S+(r, τ) → −S−(r, τ) − iπa . (6.6)

The negative sign in front of the imaginary part is due to
the fact that the logarithmic singularity in this example
is circled in the clockwise direction.

In Section IV the analytical continuation that trans-
forms the equations of motion for collapsing matter into
equations of motion of the expanding matter was found.
The results of the present Section are in line with this
finding. The actions for incoming and outgoing particles
transform one into another in Eqs.(6.5),(6.6).

VII. PARTICLE IN THE FIELD OF ETERNAL

BLACK HOLE

It is instructive to specify the approach of Section VI
for the simplest possible case, when both functions f, F ,
which govern the collapse are constants

f = const , F = rg = const . (7.1)

This condition, which incorporates the physically in-
teresting case of the eternal Schwarzschild black holes
Eqs.(3.10),(3.13), indicates that w defined by Eq.(5.6) is
a function of only one variable r, which allows to inte-
grate Eq.(5.5) explicitly

S±(r, τ) = −

∫ r ε dr

(f + F/r)1/2 ∓ (f + 1)1/2
− ετ .(7.2)

Here ε is the energy of the particle. The sign minus in
front of the integral in Eq.(7.2) is related to negative ve-
locities of the collapsing matter ṙ < 0, compare Eq.(3.9).

The explicit integral representation Eq.(7.2) allows one
to verify that the action possesses the analytical struc-
ture shown in Fig. 2. Namely, on the complex plane r
there exists a cut from r = −F/f to r = 0, which con-
nects the two sheets A+ and A− of the Riemann surface.
On the sheet A+ there exists an additional logarithmic
singularity. It arises from the node in the integrand in
Eq.(7.2), being located on the horizon

r = F ≡ rg . (7.3)

These facts confirm what is known from a more gen-
eral approach of Section VI. One also re-derives
Eqs.(6.5),(6.6) specifying that for eternal black holes a
in Eq.(6.3) is a constant

a = 2πrgε =
ε

2TH

, (7.4)

where

TH =
1

4πrg
(7.5)

is the Hawking temperature.

VIII. WAVE FUNCTION

Consider the scalar massless particle that moves with
the zero orbital moment in the gravitational field of a
collapsar, describing its propagation in the semiclassical
approximation with the help of the wave function

ψ(r, t) = C
(

exp
(

iS−(r, t)
)

+ R exp
(

iS+(r, t)
)

)

. (8.1)

Here S∓(r, t) are the two actions that are related to the
incoming and outgoing trajectories. Correspondingly,
the first term in Eq.(8.1) describes the incoming wave,
while the second one represents the outgoing wave.

The wave function Eq.(8.1) can be used to describe the
process of absorption of particles by the black hole. In
this case one needs to consider the behavior of this wave
function on the horizon of each shell, i.e. to presume that
r, τ satisfy condition

| r − F (R) | ≪ F (R) , (8.2)

(which is similar to Eq.(6.1)). Eq.(8.2) has a clear phys-
ical meaning. It states that there is a shell of matter
characterized by some particular value of R = R(r, τ),
which at the moment of time τ has the radius vector
r that is close to the horizon of this shell F (R). Same
can be rephrased as a statement that the amount of dust
matter that is accumulated inside the sphere of radius
r at the moment τ is close to a critical value, which is
necessary to create a black hole. Generically, as the time
passes on each shell converges to its own horizon F (R)
(eventually crossing it). Therefore there exists a set of
critical values rc of the radius vector that are located in
an interval 0 < rc ≤ Fmax, Fmax = limR→∞ F (R); if r
is close to any such critical value, then one can always
choose τ to to satisfy Eq.(8.2). For static black holes the
set of critical radiuses degenerates to the only value of
the Schwarzschild radius rc = rg.

Conventional wisdom prompts one to assume that in
the vicinity of the horizon there should be no reflected
wave; whatever comes close to the horizon must be ab-
sorbed, simply because we deal with a black hole, the
object that is presumed to be absolutely black. Thus,
one could anticipate that the second term in Eq.(8.1) is
absent, i.e. the factor R, which we will call the reflec-
tion coefficient, is zero, R = 0 [42]. The absence of the
reflected wave on the horizon, often called the Matzner
condition in the stationary problems, see the references in
the book [13], played a fundamental role in the scattering
problem; it was used in the pioneering Refs. [4, 5, 6, 7, 8]
as well as in numerous subsequent developments related
to the scattering problem.
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It turns out, however, that the reflection coefficient
proves be nonzero |R| > 0, the second term is present in
Eq.(8.1) on the horizon. In other words there is the RH,
as was shown in [29, 30, 31] for eternal black holes.

In order to verify this claim for the collapsing case let
us apply the method outlined in Section II, which cul-
minates in Eq.(2.1) for the wave function Ψ(Q) of the
quantum system. The system considered here includes
the collapsing dust matter plus the incoming probing
particle. However, quantum treatment is necessary only
for the particle, as the dust matter is much less affected
by quantum effects. This happens because the quantum
effects prove strong only for low energies of a particle
that approaches the horizon (see Eq.(8.7) below), while
each drop of the collapsing dust can be considered as a
heavy particle that has high energy associated with its
mass. Anticipating this fact from the very beginning,
one can describe the matter in the pure classical approx-
imation, taking quantum effects into account only in the
wave function of the particle ψ(r, t).

Thus, Eq.(2.1) needs to be reformulated in terms of the
wave function ψ(r, t) of the particle, which moves in the
given time-dependent metric produced by the collapsing
matter. As the first step in this direction, let us use the
contourC shown in Fig. 2 for the analytical continuation.
Firstly, using this contour one continues analytically the
equations of motion Eqs.(3.8),(3.9) for each shell R of
the dust matter, converting the equations for the col-
lapsing matter into equations of the expanding matter
(converting the black hole into the white hole). The way
to do this was described in detail in Section IV. Sec-
ondly, using same contour C one can fulfill the necessary
transformation of the wave function of the particle. Us-
ing Eqs.(6.5),(6.6) for the classical action one finds that
this operation can be written as a transformation of the
wave function ψ(r, t) → ψ̃(r, t), where

ψ̃(r, t) = Ceiγ
(

ρ exp
(

− iS−(r, t)
)

(8.3)

+
R

ρ
eiδ exp

(

− iS+(r, t)
)

)

.

Here ρ is governed by the imaginary constant in the
transformation of the action (6.5),(6.6)

ρ = exp(−πa) , (8.4)

where a is defined in Eq.(6.3), while the phases γ, δ are
related to the real constants in the transformation of the
action, which were omitted in (6.5),(6.6). Clearly, the
first main term in Eq.(8.3) describes the outgoing wave,
indicating that this wave function describes the creation
of the particle. This is a sensible result since the ana-
lytical continuation transforms the matter into the white
hole, as discussed above. The white whole is able to
create particles. Thus, the considered analytical contin-
uation leads to the time inversion.

Since the time invariance is valid, one is certainly free
to fulfill the inversion of time directly in the equations of

motion. By applying the inversion of time to the classical
equations of motion for the dust matter one brings them
back to the collapsing case. The inversion of time leads
also to the complex conjugation of the wave function of
the particle, i.e. to the transformation

ψ(r, t) → ψ′(r, t) = ψ∗(r, t) . (8.5)

Thus the inversion of time can be fulfilled in two different
ways. either by the analytical continuation, resulting in
Eq. (8.3), or it can be done directly in the equations of
motion, which leads to Eq.(8.5). Since these two ways
should give the same physical result, the wave functions
in Eqs.(8.3),(8.5) should be the same, or at worst differ
by some phase factor. One derives from this

ψ̃(r, t) = eiχ ψ′(r, t) = eiχ ψ∗(r, t) . (8.6)

This equality presents a restriction on the wave function
of the particle, which stems from the symmetry related to
the time inversion (compare Eq.(2.1), which was written
in general terms). From definitions of the wave functions
Eqs. (8.1),(8.3) and Eq.(8.6) one derives that the reflec-
tion coefficient is necessarily nonzero

|R| = ρ = exp(−πa) > 0 . (8.7)

Thus, the invariance under the time inversion Eq.(8.6)
makes the process of the RH inevitable, the horizon is
able to reflect the incoming particles.

Derivation of Eq.(8.6) was based on a particular con-
tour on the complex plane r shown in Fig. 2. This
contour must necessarily cross the cut that connects the
sheets A+ and A− of the Riemann surface, thus leading
to the time inversion in the equations of motion of the
matter Eq.(4.1) and transformation of the wave function
Eq.(8.3). The chosen way of curling around the loga-
rithmic singularity leads to a sensible result, |R| < 1 in
Eq.(8.7), while the opposite direction of circling around
this singularity would result in the violation of unitarity
|R| > 1. Such dependence of the result on the contour is
common in semiclassical problems, see the book [37].

Eq.(8.7) shows that the RH really takes place, the hori-
zon reflects particles.

IX. DISCUSSION

A. Main result

Our main result is presented in Eqs.(8.1),(8.7), which
show that the wave function of the particle approaching
the black hole horizon has a component that describes the
reflected wave. In other words, the particle can bounce
on the horizon back into the outside world. According to
Eq.(8.7) the probability of this effect equals

P = |R|2 = exp(−2πa) > 0 , (9.1)
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where the parameter a is expressed in Eq.(6.3) via the
functions f = f(R), F = F (R), which define the col-
lapse. Their argument R = R(r, τ) depends on the coor-
dinates r, τ of the wave function. Additionally, a depends
on the Hamiltonian of the particle H0 = −∂S/∂τ , which
is taken on the horizon. The expression for a simpli-
fies in the limit of the static Schwarzschild black hole,
f(R) → 0, F (R) → rg = const when Eq.(7.4) is valid.
In this case Eq.(9.1) reduces to

P = exp(−ε/TH) > 0 , (9.2)

where TH is the Hawking temperature Eq.(7.5). Eq.(9.2)
coincides with the result of [29, 30, 31] derived exclusively
for the static case. Eq.(9.2) shows that the reflection is
strong for low energy particles ε < TH. In other words,
in the low energy limit the horizons of black holes act as
mirrors.

B. Symmetry condition

It is interesting to compare the symmetry condition
Eq.(8.6) with a similar condition found for the station-
ary case in [29, 30, 31]. The latter works focused on
the wave function of the particle, leaving aside the effect
of the discussed transformation on the collapsing mat-
ter. This simplified the consideration, but raised several
qualitative questions. First, the symmetry, as it was de-
rived in [29, 30, 31], was formulated in terms of regions
I and III of the Kruskal plane [38] (definitions of regions
follow [35]). However, one could argue that the collaps-
ing black hole moves from region I into II, and does not
come across region III. It was unclear therefore whether
the proposed symmetry condition would hold for collaps-
ing black holes. Second, there are known several ways to
define the topological correspondence between regions I
and III, see Refs. [39, 40]. Refs. [29, 30, 31] suggested to
use a particular correspondence (the most obvious), post-
poning a question of whether the symmetry condition re-
mains valid for all other possible ways of the topological
correspondence.

The symmetry transformation in the present work is
discussed from a broader perspective (in addition to the
fact that a more general collapsing case is considered).

The inversion of the time is discussed in relation to both
the wave function of the probing particle, and the motion
of the matter. This point of view enables one to formu-
late simple physical answers for the mentioned problems.
First, the inversion of the time variable not only brings
the particle to region III, but it also transforms the col-
lapsing matter into the expanding white hole, thus mak-
ing region III relevant to the matter as well. Second, for
any sensible topological correspondence between regions
I and III the operation of the time inversion remains a
symmetry of the space-time. This symmetry guarantees
that the presented approach remains applicable for any
topological identification between these regions.

C. Relation to Aharonov-Bohm effect

The RH can be considered as a manifestation of the
logarithmic singularity, which the action exhibits on the
event horizon. At the same time the classical trajectories
do not come across this singularity (as one easily verifies
using Fig. 2). Therefore the singularity has no influ-
ence on the classical equations of motion, being impor-
tant only in the action. This property of the problem has
a similarity with the Aharonov-Bohm effect, as was men-
tioned in [30, 31] in relation to the case of eternal black
holes. Earlier a similarity that exists between physical
events in the vicinity of the horizon and the Aharonov-
Bohm effect was discussed in Ref.[22].

X. CONCLUSION

It is shown that the reflection on the horizon of black
holes is a general phenomenon, which manifests itself
for the collapsing case as well as for eternal black holes.
One of interesting consequences of this fact is related to
the information paradox. Since any incoming wave can
bounce on the horizon back into the outside world, the
horizon cannot destroy completely all the incoming in-
formation, at least part of it inevitably returns into the
outside world.
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